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a b s t r a c t

Generalized two-dimensional problems of the torsion of elastoplastic solids of revolution of arbi-
trary shape for large deformations under non-uniform stress-strain conditions are formulated and a
method for their numerical solution is proposed. The use of this method to construct strain diagrams
of materials based on experiments on the torsion of axisysmmetric samples of variable thickness
until fracture occurs is described. Experimental and numerical investigations of processes of elasto-
plastic deformation, loss of stability and supercritical behaviour of solid cylindrical steel samples of
variable thickness under conditions of monotonic kinematic loading with a torque, a tension and a
combined load are presented. The mutual influence of torsion and tension on the deformation process
and the limit states is estimated, and the universality (the independence of the form of the stress-
strain state) of the “stress intensity – Odqvist parameter” diagram for steel for large deformations is
proved.

© 2008 Elsevier Ltd. All rights reserved.
Traditionally, the mechanical properties of materials is determined from experiments on the stretching of samples. However,
when investigating the strength characteristics difficulties arise due to the occurrence of non-uniaxiality and non-uniformity of
the stress-strain state in the samples, due to non-linear boundary effects and localization of the deformations. When carrying
out experiments on the torsion–tension of thin-walled cylindrical samples, loss of stability of the envelope precedes fracture.
It is well known that the greatest uniform deformations occur under torsion in the surface layer of solid cylindrical samples.1

The non-uniformity of the stress-strain state over the thickness of thick-walled samples makes it difficult to process the exper-
imental data when determining the stress-strain state. Existing approaches to solving this problem – Ludwik’s method2 and the
“conditional thin-walled tube” method3 – impose limitations on the shape of the samples and assume that the stress-strain
state is uniform over their length, which does not enable the stress-strain state to be estimated at the instant when fracture
occurs.

To identify the strain and strength characteristics of materials under large elastoplastic deformations when the stress state is complex
(torsion–tension) it is better to use methods of mathematical modelling of the deformation of laboratory samples or structural components.
A variational-difference method of solving generalized two-dimensional torsion problems has been developed for this purpose, which
enable the deformation of elastoplastic solids of revolution to be modelled under the combined action of an axisymmetric load and torsion,
taking large deformations into account.

1. Numerical solution

When solving generalized two-dimensional torsion problems, we will start from the Jourdain principle of minimum work, written in a
cylindrical system of coordinates r, �, z (Oz is the axis of revolution):
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(1.1)

where �ij and ėij are the components of the Cauchy stress tensor and the rates of strain tensor, u̇� and w� are the components of the
displacement velocity and displacement acceleration vectors, p� and q� are the components of the surface and contact loads (i, j, � = r,
�, z), � is the density, � is the area occupied by the meridional section of the solid medium, Gp is the part of the surface on which the
known surface load is specified a priori, and Gq is the part of the surface on which the contact pressures are specified in the course of the
solution. By virtue of the axial symmetry, all the required functions depend on the radial and axial coordinates and do not depend on the
circumferential coordinate.

The kinematic relations are formulated in velocities and are constructed in an actual-state metric, which enables us to take large
deformations into account. The components of the rate of strain and rates of rotation tensors, taking into account the equality u̇� = r�̇ (�
is the angle of torsion with respect to the circumferential coordinate �), have the form

(1.2)

To eliminate the singularity on the axis of revolution and to increase the accuracy of the numerical solution of the equations of motion,
we introduce the following new functions

Then, the general equation of dynamics (1.1), taking relations (1.2) into account, can be converted to the form

(1.3)
The theory of flow with non-linear isotropic strengthening is used to describe the elastoplastic properties of materials. The relation
between the components of the stress-rate deviator �̇ ′

ij
= �̇ij + Ṗıij and elastic parts of the components of the strain-rate deviator (ėe

ij
)′ =

ėij − ė�ij/3 − ėp
ij

is obtained using the generalized Hooke’s law in the actual-state metric

(1.4)

Here K and G are the bulk compression and shear moduli, P is the pressure, DJ is the Jaumann derivative, which describes the rotation of
a particle of the medium as a rigid whole, and �ij is the Kronecker delta. Because of the axial symmetry we can ignore the total angle of
rotation about the Oz axis in the expressions for the components of the rotation rates tensor �̇ij (the last three equations of (1.2)). The
plastic-strain rates are defined by the associated flow law

(1.5)

The system of equations (1.2)–(1.5), supplemented by the kinematic boundary and initial conditions, represents the complete formula-
tion of the initial-boundary-value problem. For numerical modelling, the calculation region is approximated by a Lagrange net of four-node
elements. The components of the displacement, rate of displacement and acceleration vectors are determined at the grid nodes, while the
components of the stress and strain tensors are determined at the centres of the elements.4 Replacing the integration over the region �
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Fig. 1.

by summation over all the elements, we obtain a discrete analogue of the equations of motion for each node of the grid

(1.6)

Here Fr, F�, Fz are generalized forces, acting on the calculation node j, rM = Mr/M, rJ = Jr
z /Jz are weighting factors, M, Mr and Jz, Jṙ

z are
generalized nodal masses and moments of inertia, and N is the number of nodes of the discrete model.

The process of deformation of a solid medium with time is split into time layers t0, t1, . . . , tk, . . . with steps �tk+1 = tk+1 − tk When
solving torsion–tension problems the contribution of the non-linear term (2u̇r �̇|)j in relation (1.6) is negligibly small, that makes it possible
to reduce the solution of the system of Eq. (1.6) to an explicit “cross” type scheme of integration over time. Finally, the rates of displacement,
the displacement and the current coordinates of the nodes of the discrete model of a solid medium are found from the recurrence relations

Here the angular velocities of the nodes of the discrete model are first determined, and then the radial and axial velocities, taking the

angular velocities obtained into account. The rates of displacement (u̇k+1/2
� )j and the angles of torsion �̇

k+1/2
j are calculated at the half-

k+1/2 k+1/2 k+1 k+1
integer instants of time (t ) and the displacements (u� ) the angles of torsion �j and the coordinates �
j

are calculated at the

integer instants of time (tk+1). The choice of the integration step in time �tk+1 of the conditionally stable scheme (1.7) is made starting
from the Courant stability condition.

2. The method of constructing strain diagrams when there is torsion

In numerical modelling, for the current angle of torsion of the sample we choose the cross-section with the greatest values of the stress
intensity �i and the Odqvist parameter 	, at which the torque M is represented in the form of the sum of two moments of the shear stress
��z in internal fibres M1 and external fibres M2 (Fig. 1)

(2.1)

Here R is the radius of cross-section, � is the thickness of the external fibre and Mexp = Mepx(�) is the experimental dependence of the value
of the torque on the angle of torsion between the faces.

In torsion, the shear stress ��z is a monotonically increasing function of the radius r and the time. We will assume that for this angle of
torsion, the part of the strain diagram used to calculate the moment M1 in the internal fibres [0, R − �], has been obtained previously. The
expression for the moment M2, assuming that the thickness of the external fibre � is small, can be written in the final form

(2.2)
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The unknown shear stresses ��z in the external fibres [R − �, R] is found from relations (2.1) and (2.2)

(2.3)

The stresses obtained are used to construct the following section of the unknown part of the strain diagram �i = �i(	) from the formula

(2.4)

The Odqvist parameter is found from the last formula of (1.5).
In the general case of the torsion of an arbitrary solid of revolution, iterational refinement of the stress intensity and the Odqvist

parameter is required. The stress intensity is corrected using the formula

(2.5)

The quantity ��z is found experimentally using formula (2.3), and �∗
i

and �∗
�z

are calculated quantities. Extrapolation of the known part
of the strain diagram is used as the initial approximation. The iterational correction procedure is carried out until the experimental and
theoretical moments agree with a specified accuracy. Extrapolation also enables the strain diagram to be corrected, but not at each time
step and only when the moments deviate more than a specified amount. The corresponding experimental dependence of the torque on the
angle of torsion Mexp = Mexp(�) is aligned with the strain diagram �i = �i(	) in a final single direct numerical calculation in discrete form
with a specified accuracy.

To test the proposed procedure we constructed a strain diagram of 12Kh18N10T steel. The geometrical parameters of the sample (Fig. 2)
are as follows: the radius and relative length of the working part R1 = 5 mm and L1/R1 = 20, the relative radius and relative length of the
clamped parts R2/R1 = 1.65 and L3/L1 = 0.14, and the overall length of the sample L = 142 mm.

In Fig. 2 the dash-dot curve represents the initial experimental relation M̂exp = Mexp(R1�/(2L1))/MT (MT = 2 · 3−3/2
R3
1�T is the limit

plastic moment and �T = 240 MPa is the yield point); the continuous and dashed curves and the small circles represent the strain dia-
gram �̂ = �i(	)/�T , constructed from experimental torsion data using this method, Ludwik’s method2 and experimental tension data5

respectively.
The strain diagram constructed from experimental data on torsion and tension, practically agree, which confirms that the “stress intensity

– Odqvist parameter” diagram is independent of the form of the stress state for large strains (up to 80%). For torsion, the uniformity of the
stress-strain state along the working part of the sample is preserved until fracture, which enables the strain diagram to be constructed up
to strains that are double those for tension.

3. Combined action of torsion and tension

We carried out a numerical and experimental investigation of the deformation of axisymmetric samples of variable thickness with a
cylindrical working part under monotonic kinematic loading with torsion–tension, taking into account large deformations and the non-
uniformity of the stress-strain state. The rate of loading was specified in such a way that the contribution of inertial forces were negligibly
small.

Fig. 2.
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To estimate the neutral influence of the two forms of loading on the strain process we introduce the following parameters

(3.1)

The kinematic parameter q represents the “fraction of torsion and tension”, ēi, ēzz and ē�z are the conventional deformation intensity,
axial and shear deformations respectively on the surface of the working part of the sample, referred to the initial length L1 and radius R1
of the working part of the sample, and uz and � are the axial displacement and angle of torsion between the end faces. For pure torsion
q = ∞, ēi = 2ē�z/

√
3, for uniaxial tension q = 0, ēi = ēzz , and for combined loading 0 < q < ∞; F is the axial force, M is the torque and A is the

total work of the axial force and the torque.
Assuming q const, the expression for the work can be converted to the form (W is the generalized force)
(3.2)

In Fig. 3 we show graphs of the dimensionless force parameters against the conventional deformation intensity ēi: the axial force
F̂ = F/FT (FT = 
R2

1�T ), the torque M̂ = M/MT , the generalized force Ŵ = W/WT (WT = L0FT ) and the total work of the axial force and the

torque Â = A/Ã (Ã is the work done by the axial force during tension up to the instant when a neck forms) for various values of the parameter
q.

We will take as the criterion of loss of stability of plastic deformation, with the formation of a neck, the condition dŴ/dēi = 0, which
characterises the instant when the generalized force Ŵ reaches its maximum values, denoted by the points on the curves. The inflection
points on the graphs of the work Â(ēi) in Fig. 3,d correspond to these. After the instant of loss of stability in the case when, during loading,
tension prevails 0 ≤ q < 1, an intensive reduction in the force parameters is observed. In the case when torsion predominates 1 ≤ q < ∞, the
maximum values of the axial force F̂ are reached after the instant of loss of stability during the formation of the neck, when the value of
the torque M̂ is reduced due to the reduction in the radius of cross-section of the neck.

The sharp change in the integral characteristics is due to the fact that the conventional deformation intensity ēi does not take into account
the local change in the geometrical parameters of the sample. The increase in the axial force F̂ as a function of the Odqvist parameter
	 in the neck on the surface of the sample occurs smoothly, and after the instant when loss of stability occurs (the dashed curves in
Fig. 3,a).

The legitimacy of using the criterion of the loss of stability of plastic deformation for a combined load considered above is confirmed
by the distribution of the Odqvist parameter 	 along the surface of the sample, shown in Fig. 4. The dashed curves correspond to the
instant when the generalized force Ŵ reaches the maximum values, while the continuous curves represent the instant when the Odqvist
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parameter reaches the maximum values: for pure torsion 	 = 1.5, for uniaxial tension 	 = 0.7 in the neck, and for combined loading 	 = 1.5
in the neck. When q = 0 and q = 4, after the generalized force Ŵ reaches the critical (maximum) values a neck is formed in the region of the
plane of symmetry, as a result of which intensive local increase in the Odqvist parameter is observed. At the point where the thickness of
the sample changes, a concentration of stresses and deformations occurs, which, in the experiment on torsion q = ∞, leads to a transverse
shear in this section when 	 = 1.5 on the surface of the sample.

The deformation up to the instant when there is loss stability are close to radial, while the supercritical behaviour is characterized by
trajectories of small curvature. For combined loading (0 < q < ∞) before the instant of loss of stability over the whole volume of the sample
the form of the stress state changes slowly towards tension, since the sample has thinned out. The change in the form of the stress state in
the neck towards shear, after the instant of loss of stability, occurs most intensively for pure tension (q = 0).

Before the axial force over the whole volume of the sample decreases, a process of active loading occurs. At the point where the neck is
formed, the active process continues up to fracture. In experiments, the neck is formed in the middle part of the sample, and its position

Fig. 5.

Fig. 6.
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depends on many random factors. In calculations the initial radius of the sample close to the plane of symmetry was 0.999R1, which led
to the formation of a neck in the plane of symmetry. For the combined action of torsion and tension, the neck is less pronounced than for
tension alone. For uniaxial tension, numerical and experimental results agree well both as regards the limit load and as regards the shape
and dimensions of the neck.5

In Fig. 5 we show the region of stability of plastic deformation when torsion and tension act together. For pure torsion, there is no loss of
stability of plastic deformation with the formation of a neck. As a consequence of this, the line separating the regions of stable and unstable
deformation has an inflection paint, and, when the fraction of torsion increases (q → ∞), it approaches the ordinate axis asymptotically.

In Fig. 6 we compare the results of a calculation (the continuous curve) with experimental data (the triangles and squares) with respect

to the parameter q, the torque M̂ and the axial force F̂ . The features of the sample deformation processes observed in the experiment agree
well with the theoretical investigations (Fig. 3) after the proportional loading regime has been established (q ≈ 2) up to the instant of loss
of stability of plastic deformation with the formation of a neck (denoted by points in the figure).
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